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Abstract - We are concerned with the problem of finding the struc­

ture and performance of the receiver that yields the best performance 

in the reception of signals thkt are described quantum-mechanically. 

The principles of statistical detection and estimation theory are dis­

cussed, with the laws of quantum mechanics taken into account. Sev­

eral specific communication systems of practical interest are studied 

as examples of applying these principles. Basic concepts in quantum 

mechanics that are needed in these discussions are briefly reviewed. 
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I. INTRODUCTION 

The performance and structure of a receiver in a communication 

system depend on the form of the signals used to transmit messages 

and the nature of the random noise that accompanies the signals. For 

a given performance measure, the best structure of the receiver can 

be determined by the principles of detection and estimation theory, which 

views the receiver as an instrument for testing certain hypotheses about 

its input and applies the methods of statistical decision theory [1-4]. 

Although real receivers are perturbed by a variety of noises, whose 

characteristics differ from one application to another, thermal noise is 

always present. By thermal noise, we mean the type of noise that arises 

from the chaotic thermal agitation of the atoms and molecules composing 

the receiver and its surroundings [5-6]. The upper limit to the receiver 

performance in the reception of a given set of signals can be ascertained 

by calling upon detection or estimation theory to determine the best 

receiver for receiving these signals when they are accompanied only by 

thermal noise. 

In most treatments of ideal reception of signals at microwave fre­

quencies, it is assumed that the electromagnetic fields of signal and 

noise, the receiver, and the interaction between them behave in accor­

dance with the classical laws of electromagnetism. The noise generated 

by an ideal receiver itself can be accounted for in the thermal noise 

accompanying the signals at its input. The ideal receiver can examine 

its input in every detail in order to extract all information relevant to 

the optimum reception of the given signals without introducing more. 

uncertainty about them. Usually, the input to the receiver is described 

by the waveforms of the electric field over the receiving aperture. 

When the signals to be detected are composed of optical rather than 

microwave frequencies, the input fields and their interaction with 

matter can be described accurately only by the laws of quantum mechan­

ics. The postulate that the ideal receiver can make use of every detail 

of its input without introducing further uncertainty must be scrutinized. 

By virtue of the uncertainty principle of quantum mechanics, for instance, 

the amplitude and phase of the input field cannot be determined 
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simultaneously with arbitrary accuracy. Indeed, an electric field having 

both precise amplitude and phase cannot in principle be generated. 

Whereas the limitations imposed by the laws of quantum mechakcs neg- 

ligibly affect the reliability of a communication system at microwave 

frequencies, they a r e  often mbre influential than the thermal noise at 

optical frequencies. 

In early studies of the quantum-mechanical aspects of communication 

systems, emphasis was placed on finding upper bounds to channel capac- 

ity and on evaluating performance of systems incorporating specific 

receivers. channel capacities were derived for.communication systems 
using known receiyers, such as  linear amplifiers, heterodyne and 

homodyne receivers, and photon counters [7-131. Qkiantum-mechanical 

limitations on the accuracy of measurements made by a phase-sensitive 

receiver a r e  taken into account by introducing at its in'put a frequency-

dependent noise statistically similar to thermal noise. Quantum limita- 

tions on the detection of known and random signals in thermal noise 

%ere;found when the receiver measures the strength of'the electric field 
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as in a heterodjme receiver 1141. 

We a re  concerned with the problem of finding the structure and per- 

formance of the receiver that yields the best performance in the reception 

of signals that- a r e  described q~ant~rq-m~chanica l ly .  In Sections IV and V, 

the principles of statistical detection and estimation theory, taking into 

account the laws of quantum mechanics [15-181,are discussed. Several 

specific communication systems of practical interest a r e  studied a s  
' 

examples of applying these principles. ~ a s i cconcepts in quantum 

mechanics nee.ded in these discussions a r e  briefly reviewed in Section 11. 



II. QUANTUM MECHANICS 

A thorough intrbduction to quantum mechanics can hardly be fitted 

into the compass of this paper; at most we can present the basic rules 

and concepts. The reasons behind them and the techniques of applying 

them to physical problems have been discussed in textbooks [19,Z0]. 

We shall content ourselves with asserting that from these principles 

a broad and accurate understanding of the physical world in general, 

and of the properties of matter and radiation in particular, have 

been achieved. 

To great accuracy, the behavior of all physical communication 

systems is governed by the laws of quantum mechanics. Whereas 

the classical laws predict the behavior of communication systems 

operating at microwave frequencies or below with reasonable accu­

racy, the radiation fields and the receivers in communication sys­

tems at optical frequencies can only be *adequately described quantum­

mechanically. We shall call a system classical or quantum-mechanical 

depending on whether a sufficiently accurate description of its 

behavior requires classical or quantum-mechanical laws. 

State Vectors and Operators 

As in the case of a classical system, the condition of a quantum-mecthanical 

system at any instant of time is completely specified-by its state. 

Mathematically, the state of a quantum-mechanical system is 

described by ,a state vector jy) in a Hilbert space XC over the field 

of complex numbers [21]. Any state vector ji) can be expressed in 

terms of a linear combination of vectors Jcp) in a basis - coordi­

nate system { 4(-n)} in the Hilbert space XC [Z2] 

o 

14') = 3 ajcp)n. 

n= 1 

Hence without loss of generality, j4') can be thought of as- a column 
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vector having an infinite number of components that are the com­
plex numbers a . State vectors can be combined linearly to form a 
new vector that also represents a possible state of the system. 
Associated with any I4) is a Hernitian conjugate (4sf, which can be 
regarded as a row vector whose components are complex conjugates 

of those in 14'; 
The scalar product of two state vectors f) and j4)is a complex 

number, written (1f4); in terms of the components tan and {bn} of 

these vectors, 

=IYZ( anbn (1) 
n
 

Following Dirac, we call I4') a ket, and (€ a bra because together 
they form a bracket (444'. Although the components an and bn of the 
kets f and Is) depend on the basis to which they- are- referred, the 
value of the scalar product (44 is independent therebf. The squated 
length of the ket ftP) is (t JtP); when it is finite, the ket is normal­
ized to.have unit length: (1I,)1. all state vectors quantum= Not in 
mechanics can be assigned a finite length. Two kets differing only 
by a phase factor ei; that is common to all components describe phys­
ically identical states. 

The kets ILJP) are transformed by linear operators. A linear oper­
ator can be expressed in term of the kets 1,n) in a basis {Icn)} 

n=l m=l
 

When represented in terms of the basis {Itn}, the operator is asso­
ciated with a square matrix, albeit usually infinite in extent, whose 

elements are 
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We can, therefore, regard a linear operator as a square matrix. An 

operftor W "issaid to be Hermitian when its associated matrix equals 

the transpose conjugate matrix .+ + is called the Hermitian adjoint 

of . 
Suppose that a Hermitian operator has a discrete set (19Z... n ) 

of eigenvalues. The associated eigenvectors fe',. gin) 

are defined by the eigenvalue equation 

Because w is Hermitian, the eigenvalues n are real. The eigenvectors 

are orthogonal. Being normalized to unit length, they have the scalar 

products 

(gnICm) = 8nm, (3) 

where 6nm is the Kronecker delta symbol. Our interest will be 

restricted to those Hermitian operators whose eigenvectors form a 

complete set, 

0o
 

l9nnYtn, (4) 
n= 1 

where 1 is the identity operator: ls = Iit), for all 1jl).i-Having 

properties (3) and (4), the eigenvectors l9n) form a basis in term 

of which any ket j4') can be expressed as 

o0
 

(5)k) 3ncC)> cC= nl¢>). 

If, on the other hand, a linear operator z, has a continuum of eigen­

values , 

ZJ;> = ;J;). (6) 
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the eigenvectors j have infinite length and are so normalized That 

w = 6(t'-L") (7) 

where 5( '- ") is the Dirac delta function. Their completeness relation 

row is 

5 JQ)( d; 1,>j = 

by virtue of which any ket Iq) can be expressed as 

00 

( :f t P). (9)N& = Y COy()Ir, d , 

Observables and Quantum-Mechanical Measurement 

Each measurable physical quantity, or observable, of the system, 

such as position, momentum, or angular momentum of a particle, is 

associated with a Hermitian operator that has a complete set of 

eigenvectors. ' The eigenvalues of such a Hermitian operator may 

form a discrete set, a continuous set, or a combination of both [Z3]. 

Without loss of generality, we shall discuss observables and their 

operators as though their spectra were disctete. Modifications to 

cover those with a continuous spectrum of eigenvalues, or a com­

bination of discrete and continuous spectra, will involve changing 

Kronecker deltas to Dirac deltas, and sums to integrations. 

Quantum mechanics postulates that an exact measurement of 

an observable whose operator is always yields as an outcome 

one or another of the eigenvalues en of 2. Immediately after 

a measurement of that yields the eigenvalue k' the measured 

system is in the corresponding eigenstate IC), and repeating 

the measurement immediately afterwards on the sampz system 

would yield the same value Ck [24]. 

7
 



Furthermore, if before measurement the system is in state li), 

the probability that the measurement will yield the value ek is given 

by 

Pr (9k) = I(k k0 IZ : ICkI Z (16) 

where ck is the coefficient in the expansion of ILP) as in (5). By 

the closure relation (4), these probabilities sum to 1, 

IPr ( k) =1 ¢g>gl> ( >=i 

k k 

If the observable, as Z, has a continuous spectrum, 1Kd4' 2 d is 

the probability that the outcome of a measurement lies between L 
and t + dt. Hence L[)j Z is the probability density function of 

the outcome of the measurement. From (2) and (4), the expected 

value of the outcome of a measurement of ' is 

9Pr (k) =( lip), (11) 

k 

when the system is in state [F). This expression for the expected 

value is independent of the coordinate system used to describe the 

ket Jlo. 
The outcome of a measurement of the observable 2 is the answer 

to the question; "What is the value of s?". Instead, suppose that 

the weaker question is asked, "Does the value of v lie between 

a and b?", and the actual value within the range (a, b) is of no con­

cern. While this question can also be answered by measuring 

itself, it is sufficient to measure the observable represented by 

the operator 

nab In)( nl, (12)
 
R(a, b) 
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where R(a, b)is the set of eigenvalues n of lying within (a, b). A n 
complete set of eigenvectors of I is the eigenvectors 4Cn of .

abI n)O 
1 1ab has only the two eigenvalues, 1 and 0, however. The outcome 

of .the measurement of 1a will be 1 if the "ralue of 5 lies in
ab 

R(a, b) and 0 otherwise. If the state- of the system before measure­

ment'is 1iJ), the expedted value of the outcome is 

ERI[1b]1< IabI4j i(n14>ILPr{ER(a,b), (13) 

R(a,b) 

which is the probability that the value of the observable - lies 

between a and b. 

The operator 11ab in (12) is a projection'operator. It obeys the 

defining equation 

(14fl
11 = 11db ab
 

for projection operators, as can be seen by using (12) and the tortho-

Since 11 ab 11 h-1 = O, the qplyceigen­normality of the kets k5,). (3). 


values of 1ab are' 0 or 1, as we have already observed. Theoperator
 

lab projects the kpt qi> onto the linear subspace spanned- by the
 

kets Ikn for which n ER(a,b). The statement, "The value of the
 

observable. E lies between a and b," is, a proposition that is either
 

true or false, and such propositions correspond in the logic of
 

quantum mechanics to projection operators like Ila The decisions
 

among hypotheses treated in detection'theory will be expressed in
 

this form. -' 

If two observables, say and T, are to be measured exactly 

and simultaneously on the same system, it must be left after the 

measurement. in a state' I n, Urn) that 'is an eigenstate of both
 

operators 4 and. T with eigenv.lues Cn, V'n respectively [z5],
 

>U. 


) n'(15) 

Tf n' m)t=. . 1 C m) 9 
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and this must hold true for all possible outcomes n of the mea­

surement. It follows from (15) and the completeness of the states 

Ign , Um) that a necessary and sufficient condition is that the operators 
and T commute, 

=(16) 

Two observables are said to be compatible when their corresponding 

operators commute. As an example, the three Cartesian coordinates 

x, y, z of a particle are compatible, for the three associated oper­

ators X, Y, Z commute.. 

Uncertainty Principle 

When the two operators and T do not commute, the corresponding 

observables cannot be measured simultaneously on the same system 

with complete precision. This is a crude statement of the Heisenberg 

uncertainty principle. To express this principle more precisely, we 

suppose that the operators and T satisfy the commutation relation; 

[ ,T] : T - T iZ, 

where Z is either a constant times the identity operator I or another 

operator. Let' 

cit2 = E[ j- E r]i 2 (17) 

denote the mean-square deviation of the outcomes of a measurement 

of . Similarly, we define 

scr : [T z _E[ T ] z .i 
v
T
 

When the system is in the state l) before the measurement, 

2 ,i-i 1 u..i2 

and 
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2 
a, =(4sT'k-.(ITI P))Z 

By using the Schwarz inequality, it can be shown [26] that the product 

c O T of. the standard deviations satisfies the inequality 

t > l Izl >/Z (19) 

for all state vectors IjP). Equation (19i is called the Heisenberg 

uncertainty relation. 

This principle can be illustrated by an example. The two operators 

P and Q satisfy the commutation relation 

[Q,P]= QP- PQ = ii, 

where h = h/Zr is Planck's constant. The corresponding observables 

are the coordinate q and momentum p, respectively, of a particle 

with one degree of freedom. The same commutation relation holds 

for the operators corresponding to the charge and current in a loss­

less LC circuit. From (19), 

a* a- > rh/Z. (20) 

In order to interpret this relation, we think of a large ensemble 

of N independent systems, all of them in the same state 14 ). On 

some systems Q is measured, on others P. The outcomes will be 

random variables, differing -from one system to -another, but when 

N >> 1, the average values will be near their mean values and the 
2 2 

near aand oj, respectively. Just what 

average values -and mean-square deviations rQ, a-i are obtained 

depends on the-state jI4' in which the systems were originally pre­

pared. The uncertainty principle (20) asserts that for no state It) 
can the product of the standard deviations T - be less than 1. 

mean- square: deviations • 2 2 

Density Operators 

Given an ensemble of independent systems, all in the same state 

5 on each will in generalI1), measurement of an observable such as 
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produce a random collection of results, the probability of obtaining 
,the value n being nILP) n = 1, Z, .... This randomness is

strictly a quantum phenomenon. The kind of randomness met in 

classical physics must also somehow be incorporated into the frame­

work of quantum mechanics, so that we can treat problems involving 

noise or random signals. The means of doing so is provided by the 

density operator p [27, 28]. 

Let a large number of systems of the same kind be prepared, 

each in one of a set of orthonormal states Jn), and let the fraction 

of systems in state 1 n) be Pn' n = 1, 2 .... with 

( ml-n) = 6m (2) 

Pn= 1. (22) 
= 1n n1 

Pn is the prior probability of the state I n. If now we measure the 

observable .the probability of obtaining the value- will be 

0o 

Pr{k} PI ek1n [I= (klPIgk). (23) 
ni= 1 

In this expression, the operator p defined by 

.00 

(24)P = Pi )(n4
 

n= 1 

is called the density operator. Since p is a linear operator, it can 

also be thought of as a square matrix. The expected value of the 

outcome of our measurement of ' is 

00 00 0 

k} = P = J ( k'P ekkkP)kfek))= ,Pr{ 

k= I k=1 k= I 

Tr (pE), (Z5)-

1z
 



where Tr stands for the trace of a matrix, the sum of its diagonal 

elements. 

Clearly, the density operator p is Hermitian. It has a complete 

set of orthonormal eigenvectors j n) corresponding to non-negative 

eigenvalues Pn and Tr p = 1. Moreover, any Hermitian operator with 

non-negative eigenvalues and trace 1 may be considered as a density 

operator that describes an ensemble of qUantum-mechanical systems. 

A density operator p also has the property Tr p2 < 1, with equal­

ity if and only ifone of the prior probabilities P. equals 1 and all 

rest 0. When this is so, the density operator is a projectionthe 

operator, p = nn" and the ensemble is a collection of systems 

all in the same state 14n. We say when p is a projection operator 

that it represents a system in a pure state; otherwise, with 

Tr p < 1, it represents a mixed state. 

Time Dependence 

we have not shown how a quantum-mechanical systemThus far, 
state ofbehaves dynamically. To discuss the manner in which the 

vector at time a system changes with time, let us denote the state 

by f14(t)). It is clear from the discussions on -quantum-mechanical 

state changes irreversibly in an unpre­measurements 'that the vector 


dictable way when the system interacts with a measuring device.
 

But when a closed quantum-mechanical system is not perturbed by 

any measurement, its state vector j4i(t)> at time t obeys a linear
 

in time [Zg]
differential equation of the first order 

(Z6)
i i f(t)) = 1t(t)), 

where H is an operator called the Hamiltonian of the system. We 

shall be concerned solely with conservative systems. The Hamil­

does not contain time explicitly;
tonian of a conservative system 


(Z6) can be solved to obtain
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It(t)) = exp[-i -(t-o)j I(t), (Z7) 

which relates the state vector. Iq(t)) dt time t to that at an earlier 

time t 
0 

The Hamiltonian H is the operator corresponding to the energy of 
the system. For many systems H can be obtained from the classical 

expression for the energy in terms of coordinates and momenta, 
these being simply replaced by their quantum-nYechanical operators 

and-properly symmetrized. Thus, for a simple harmonic oscillator 

of mass m and frequency w, the Hamiltonian operator is 

-
H= (2m)I (P2+wQ2) (28) 

in terms of the operators P and Q for its momentum and its coor­
dinate. 

The operator exp -iH- (t-t o )] executes a unitary transformation on 

the state vectors hi', as in (27). Under this transformation the 

lengths of the: kets Ji) and the angles between them in the Hltbert space 

do not change. This representation of the time dependence of a sys­

tem as a rigid rotation of its state vectors is called the "Schr6dinger 
picture." In the Schr6dinger picture, operators not depending explie­

itly on the time are taken as constants. 

We shall use a different, but physically equivalent, representa­
tion of the time dependence of quantum-mechanical systems, which 

is called the "Heisenberg picture" [30]. The state vector in the 

Heisenb erg picture is independent of time. . At time t, an observ­

able 1(t) is related to the operator . in the Schr6dinger picture 

by 

M(t)= exp i # (t-t)I - expl-i # (t-t (z9) 

From this transformation and (Z6), the equation of motion for the 

observable in the Heisenberg picture is 
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d (t) a (t). =- +(t)R]+ (30) 

The Hamiltonian H equals the Hamiltonian in the Schr6dinger pic­

ture, since the system is consetvative. 

If a system is in a statistical mixture of states represented by a 

density operator p, p is independent of time in the Heisenberg pic­

ture. The expectation value of a measurement of an observable 

(t) at time t will be 

Et[ ] Tr [p t)I. 

It is easy to see that this expectation value equals Tr [ p(t)], where 

p(t) = exp [- H(t-t o ) ] p exp [ Hit-to)] and are the operators at 

time t in the Schr6dinger picture. 

Ideal Measurement of Incompatible Observables 

The class of exact measurements of compatible observables dis­

cussed above does not- include those measurements yielding approx­

imate values of several incompatible observables. As an example of 

devices that make such approximate measurements on the teceived 

field, we mention a high-gain laser amplifier followed by a clas­

sical receiver. The field at the output of such an amplifier can be 

treated as a classical field with precisely measurable amplitude 

and phase. Therefore, we may consider that the amplifier performs 

simultaneous approximate measurements of the amplitude and phase 

of its input field [31]. The additive Gaussian noise injected by the 

amplifier accounts for the inevitable error in the measurement 

imposed by the uncertainty principle. 

We shall briefly consider a definition [3Z] for iueal mneaur ­

ments to include such approximate measurements of incompatible 

set of numbers that are the observedobservables. Let x denote the 


values of the measured observables. By an ideal measurement, we
 

a
mean one in which each possible outcome xn is associated with 
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state vector Ixn) such that the probability for obtaining xn is 

P(xn) wI (Xn, I (31) 

wheathe system is in the state ILP) prior to the measurement, and 

w is a normalization constant. Moreover, the state of the system 

after the measurement depends only on the measurement result, and 

not at all on its initial state befoie the measurement. Thus sub­

sequent measurements cannot yield additional information about that 

initial state. 

The normalized state vector Jxn) is called a measurement state 

vector. Since some result must be obtained from any measurement, 

the set of measurement state vectors must satisfy a completeness 

relation of the form 

wW xJ)(X] 1: (32) 

n 

Any ideal measurement, therefore, -is characterized by a complete 

set of measurement state vectors. 

Exact measurements of compatible observables are ideal by the 

above-mentioned criterion. They are characterized by complete sets 

of orthonormal neasurement state vectors that are the simultaneous 

eigenvectors of the measured observables. In such cases the rela­

tion (31) is satisfied with the normalization constant w equal to 

unity, and (3Z) is simply the completeness relation in (4). The niea­

surement of field amplitude and phase as made by an ideal high­

gain amplifier is also ideal. In this case, the measurement state 

vectors are the coherent state vectors defined in (50), and the 

appropriate completeness relation is given by (52). These measure­

ment state vectors are not orthogonal. 

Sets of n6northogonal vectors that satisfy a completeness rela­

tion such as (32) are ckiled overcomplete sets. Ideal measurements 

yielding approximate values of several incompatible observables can 
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be characterized by overcomplete sets of measurement state vectors. 

It is probably true that for every such measurement, in principle, 

there is an equivalent exact measurement characterized by an ortho­

normal set of measurement state vectors. Many conveniently realizable 

measuring processes correspond, however, to overcomplete sets of 

measurement state vectors, while realization of the equivalent exact 

measurements might prove difficult. 

A fairly general way of implementing ideal measurement of incom­

patible observables is to combine the system to be measured with 

an auxiliary system whose initial state is known. The two systems 

may be allowed to interact for a length of time. An exact measure­

ment of a complete set of compatible observables for the expanded 

system is then made. As an example of this prescription, consider 

the observables Q and P for a simple harmonic oscillator. We may 

combine this system with an auxiliary system n-,om3prising a similar 

but independent oscillator in its ground state, whose corresponding 

observables are Q' and P'. The observables Q-Q' and P+P' of the 

expanded system are compatible, and their simultaneous exact mea­

surement yields approximate values of Q and P. Further analysis 

[33] shows -that this prescription indeed yields an ideal measurement 

of Q and P. 
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III. QUANTUM-MECHANICAL DESCRIPTION OF COMMUNICATION
 

SYSTEMS 

A typical communication system is shown in Fig. 1. In every 

signaling interval of duration T, the input m of the system is either 

one of M messages generated by a digital data source or a set of 

parameters carrying analog data. A signal field, whose character­

istics depend on the input message, is generated by the transmitter 

and is sent through the channel to the receiver. During each signaling 
A 

interval, the receiver makes an estimate m of the transmitted 
A 

message. Our objective is to design the receiver so that m minimizes 

a given cost function used to measure the fidelity of this estimate. 

Examples of commonly used cost functions are the probability of error, 

Pr In ,for digital messages, and the mean-square error, E[ lr-m ]2 

for analog data. 

For simplicity, input messages in different signaling intervals are 

assumed to be statistically independent. Furthermore, our attention 

will be restricted to systems in which the channel is memoryless and 

no coding schemes are employed. In these systems, the receiver 

makes independent estimates of input messages .in successive signaling 

intervals on the basis of the electromagnetic field observed during each 

of these intervals. Therefore, we need to be concerned only with the 

problem of making an optimum estimate of a single message. The 

signal field representing such a message is a time-limited one with 

nonzero instantaneous power only in a. time interval of duration T. 

Without loss of generality, we let this interval be (0, T). 

The receiver admits the incident field through an area normal to 

the direction of the transmitter. In an ordinary receiver, this area 

corresponds tb -theeffective area of the antenna, which in practice 

must be limited to a finite size. This area will be called the receiving 

aperture.
 

Sinde at any time the instantaneous power associated with a time­

limited signal is :nonzero only in a finite region in space, and the noise 

fields at different p6ints in space are statistically independent, the 

receiver can be idealized as a large lossless box or cavity with 
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perfectly conducting walls. During the time interval ( 0 ,  T), the inci- 

dent field is admitted into the cavity, initially empty, through the 

receiving aperture. At the end of this interval, the aperture is closed, 

and measurements are  made by the receiver on the field inside the 

cavity, which is  called the received field. 

The received field can be represented a s  a superposition of normal 

modes of the cavity. Each mode behaves like a harmonic oscillator 

with frequency w k; the frequencies depend on the shape of the cavity. 

To be more specific, the classical waveform, &(r ,t), of the received 

electric field can be expanded in terms of standing-wave, normal-mode 

functions u (r)of an appropriately, chosen cavity of volume V-k -

where E ,the dielectric constant, is used here for normalization. As 
0 

a result of boundary conditions at the walls of the cavity, the functions 

u (r)are orthonormal, 
-k -

Inside the cavity, Yk(f) is a solution of the Helmholtz equation 

for all k, where c is the velocity of light in vacuum. The oscillation 

frequencies w k  of the normal modes are  determined by (34) and (35). 

As a consequence .of Maxwellls field eq-tions, the functions qk(t) 

defined by 

in association with the mbde amplitudes pk(t) in (33), satisfy the equa- 

tion of motion 



(37)2- d qk$t)2 + (.kqk(t) =0. 
Z
 

dt
 

Therefore, we may associate each mode of the field with a harmonic 

oscillator of frequency wk" Furthermore, it can be shown from 

H con­Maxwell's field equations and from (33)-(35) that the total energy 

sum of the energies of the uncoupledtained in the received field is the 

harmonic oscillators [34] 

(38)H1 (p4+ WZZ)/z. 


k
 

terms ofIt is often preferable to represent the received field in 

A particular set ofplane traveling waves rather than standing waves. 

the set of plane traveling­mode functions suitable for our purpose is 


wave mode functions of a cubical cavity of volume V. That is,
 

(39)uk(r ) = V-/Zek exp(ik r), 

where ek is a unit polarization vector perpendicular to the propagation 

vector k, and IkI2 = wk/c , for all k. The complex amplitude ak(t),of 

each plane traveling-wave mode is related to the real variables Pk(t)
 

and q(t) by
 

(40)ak(t) (2 " /k)i[(Okqk(t)+iPk(t)]. 

Hence the equations of motion for ak(t) are 

d 
T ak(t) = -iwkak(t), 

which have solutions 

.ak(t) = ak exp[-ikkt1 (41) 

Z0
 



In tetms of-these complex amplitudes, the energy of each normal mode 

is 

Hk -h kl k (42) 

Quantization oi ne rtaaiation Field 

The quantum theory of radiation [35] also treats each mode of the 

field as a harmonic oscillator. - The "coordinates" qk(t) and T momenta" 

Pk(t) are replaced by their corresponding quantum-mechanical operators 

Qk(t) and Pk(t),which obey the commutation rule 

[Qk(t) ,P (t)] =.Qk(t)Pn(t) -. Pn(t)Qk(t) = 1 6kn (43) 

for all k and n. The complex amplitudes ak in (41) are replaced by 

operators ak that are related to the operators Qk(t) and Pk(t) by 

ak exp[-iwkt] = (Z iw)1/z [wkQk(t)+ iiP/) (44 

It follows from the commutation rules (43) that the commutation rela­

tions between the operators ak and their Hermitian adjoints ak are 

6 kn1[akan] = for all n and k. 

Interms of these operators, the electric fieid operator is 

E(r,t) = i Z (ifwk/ZE V)1/ {ak exp[i - k r)] - a" exp[ + i(wt - k r) 

(45) 

The Hamiltonian of the field becomes 

II = k,
 
k
 

where
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Hk=l (aka+aak) = h(a ak +). (46) 

reasons that will appear immediately, the operator a+a is
For kki
 

th

.called the number operator of the k mode. In texts on quantum mechan­

ics, it is shown that the eigenvalues of the operators akak are the posi­

tive integers and zero [36]. We denote the eigenvectors by the corresponding 

eigenvalues 

akak ink) =nkjnk). (47) 

Hende by (46), the eigenvalues Ek of the energy-in the kth mode are 

Ek =lrwk(nk+Z2). 

When the mode is in the state Ink), it is customary to say thatit con­

tains nk photons, each of which carries an energy of i wk . The state 10), 
zero-point fluctuation ener 1the ground state,possessies a 

When the operator ak acts to the right on an eigenvector Ink) of the 

number operator akak, it converts the eigenvector Ink) to Ink-I), 

akink) 7k/Z Inki-) (48) 

thereby reducing the number of photons of the mode by 1. For this 

reason, ak is called the annihilation operator of the kth mode. Its 

Hermitian adjoint ak raises the number of photons by 1 and is called 

the creation operator, 

akin (49)") =(x,+1)l/2 ink4'1' 

When the kth mode of the field is in a state described by a state 

vector Iak) that is a right eigenvector of the annihilation, operator ak, 

aklak) = aklak)1 (50) 

where ak = akx + iaky is a complex eigerivalue, the mode is said to be 

ky 



in q coherent state [371. Alternatively, we say that the mode contains 

a-coherent signal. The coherent state vector Iak) can be expressed 

in terms of the 6igenvectors Ink) of the number operator akak [381 
Co 

Iak) k2/?1 (4k - k Ink) ,
 

nk= I
 

and are normalized so that (aklak) = 1. Moreover, they are complete, 

in the sense that 

5 ak) (akIdZ k/r = 1, (52) 

where d2 ak = dakx da is the element of integration in the complex 

plane, over the entirety of which the integration is performed. The 

coherent state vectors Iak) and 1Pk are not orthogonal, however. Their 

inner product is 

- k k/2-l1kI2 /2]. (53)akIlk > = exp[a PkIa 

The entire field is in a coherent state Ifak}) when .all of its normal 

modes are in coherent states. .The state Vector Ijk}> is simultaneously 

a right eigenvector- of all of the annihilation operators ak. 

ak Ilk}) = ak I{Ck}). (54) 

It can be taken-to be the direct product of the state vectors for the 

individual modes 

f{ak}) 1 2 -k,---) = k kal k,.... 

The vector space spanned by the vectors I{a) is the direct product 

space of those spanned by the vectors Ik). 
It has been 'hown [39] that an antenna having a known current distri­

bution and suffering no unpredictable reaction from the surrounding 
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field will produce an electromagnetic field that is in a coherent state. 

When the field is in the coherent state I{ak})I the classical waveform 

of the electric field can be obtained from (45) and (54) as the expected 

value of the operator E(r,t), 

g'(r, t) ({ak}IE(r,t)f{ak}) 

2 Im [ (hwok/ZE 0V) / ak exp[-i(Ct-k" r)]. (55) 

An extensive calculus involving coherent-state vectors has been 

developed by Glauber [40,41]. In particular, it has been shown that a 

large class of density operators, including those met in communication 

theory, can be expanded in terms of them, 

p SP({ak}) 1 1ak) (akld k' (56) 

where the function P( {ak}) is called the weight function. This expansion 

is called the P-representation of the density operator p. The weight 

function P( {akI) has many of the properties of a classical probability 

density function, but it is not always positive.' Li particular, 

P({1)d2 - 1 

k=1 k 

follows from Tr p = 1. The expected value of an operator N is given 

by 

"
E[']=Tr[p = SP({ak})({akIBI{k} d2 
k=I
 

when the state of the field is specified by the density operator p in (56). 
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Representation of Noise 

For the moment, let us suppose that the field inside the cavity con­
sists in thermal radiation alone. When this random field is in thermal 
equilibrium at an absolute temperature ., the density operator Pk 

th
describing the state of the k normal mode in the P-representation is 

Pk~ SexpI-w a aI d2 a/irdvXk' (57)kIla1X 

where 

k= Tr [Pkatak ] = {exp(hwk/K )1} (58) 

is the average, number of photons in the kt h mode with frequency k 
2 3 [42]. K = 1. 38 X 10- J/deg is Boltzmann's constant. From' (51), 

it follows that p, can be+ expanded in terms of the eigenvectors Ijn 0of 

the number operator akak, 

00 

nk=O (59) 

Vk = 'kl( XVk+1) = exp(-li ok/K f). 

In the classical limit, KY$;hiwk, the weight function 

P(ak) -( jk)- exp[- Iak I 

(irafkX exp[-(a2+ckZ).Ak] 

yields the joint probability density function of the real part akx and 

imaginary part aky of the complex amplitude ak of the mode [43]. Since 
.."Ykin (58) becomes approximately equal to KI/flw k, it follows from 

(42) 	that the average energy of this mode equals K-lndependently of 
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its frequency. In classical communication theory, this type of noise is 

called the additive white Gaussian noise with spectral density- XA0 = K . 

When a normal mode of the received field contains both thermal 

noise and a coherent signal that alone is represented by the coherent 

state vector IIk)' the center of the Gaussian weight function in the 

P representation is simply shifted from the origin by a phasor 4 k" -The 

density operator Pk becomes 

" 
Pk = (r/Vk) - exp[-Ia-k 2 /Vk ] Id) (a I d2 . (60) 

In the representation of the operator Pk as a matrix in terms of the 

basis specified by the eigenvectors Ink) of the number -operator a+ak, 

the matrix elements are [44] 

(npklm) = (1-vk)(n! /ml )1/2 vm(4/* p-nktexpv2 
I] XLW~-(l v fJ k k/ [-(-Vk)llk 

in-n
 

Vk = Yk/(yk+1'). 

where Lm-n (x) is the associated Laguerre polynomial. 
The ndensity. operator p for the entire received field when it contains 

only thermal radiation in equilibrium is given by the direct product 

P =' I-.V1 I exp[-IckJ/Yk] k (akf dZak/wsVk, (6Z) 

where v is the number of modes. The operator p is defined in the 

linear vector space which is the direct product of the linear vector spaces 

spanned by the coherent state vectors of the individual modes. When 
a coherent signal is present in the cavity with Gaussian thermal noise, 

the density operator, in the P-representation, is 
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5P P({[ak}) kI~~"' jda,(3
k (63) 

P({ak})= Tr..v Idet 4 expI ,l) am.-m ( n(an-- n, , 

m n 

where "i is the complex amplitude of the coherent signal in mode m. 

Here is the mode correlation matrix, whose elements are 

-nm = Tr [a+a.] - Tr [pa+] Tr [Pan]. (64) 

When the modes are statistically independent, the mode correlation 

matrix * is diagonal, 

mk k mk6k' (65) 

where X k is the average number of thermal photons in mode k and 

is given in terms of the -frequency wk by (58) when the modes are in 

thermal equilibrium. 

At this point-, let us note that the P-representation of a density 

operator p is not ufiique. 'Instead of the coherent states 11k})' p can 

be expressed in the P-representation in terms of the right eigenvectors 

of a set of operators b,, where 

bW. Vka , (66) 

k= 1 

and the coefficients Vjk are elements of an unitary matrix V. That is, 

0jk 

IV n= Vjk nk 6jk (67
k=1 k=1 

Ah easy algebraic manipulation shows that the operators b. and their 
+ j

Hermitian adjoints b. satisfy the same commutation relations as 
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the operators ak and a+ . Hence, b.a and b can be regarded as the 
n
 

annihilation and *creationoperators, respectively, of a set of new 

modes. The right eigenvectors I 1 k}) of fhe operators b.J 

bkl{fTk}) =kITPk 

are coherent-state vectors spanning the same vector space as spanned 

by the vectors I{ak}). When the density operator p is expressed in 

terms of Ij{k}) ifi the P-representation 

p =d 
(68) 

k=l
 

the new weight function P'({tPJ) can be obtained by substituting the 

relation 

O*"
 

k I V+j (69) 

j=l 

in the weight function P( {ak}). 

If the unitary matrix V is such that the matrix v£ V is cilagonal, 

the density operator p in (63), when expressed-in terms of eigenvectors 

of the operators bj given by (66), is 

p =C '- Sexp ktk/I{Pkb({Pk}I Idlk/.'k,d (70,
k:[ k= l 

6f the matrix V . , and
where .5'is the kth diagonal element 

00. 

(71)

= '- Vkm .
 
m=l
 

Therefore, for any particular coherent signal in Gaussian thermal 

noise, a set-of normal modes can be chosen, by appronriatelv choosing 
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the shape of the receiver cavity, to represent the received-field so that 

the individual modes are uncorrelated. 

When the frequendy range of the signal is small so that for all k for 

which * 0, 

(72)A/k 

S= ~AIin (70) can also be taken to be the average number of thermal
k 

photons in the new normal mode k. , The density operator p can be 

express6d in terms of coherent states I{1k}) that are the right eigen­

vectors of the annihilation operators g. 

p= Or3" Sexr{ l-ri I-YV11 t]yvkj) yk I dYkt 
-k#l 

1 

(.73) 

In this expression, 

Co o 

m-! m=
 

where the matrix elements Vim are chosen to be 

00

Z (74) 

m=l 

The other rows of the matrix V are chosen so that' V is unitary. We­

see that only the mode with annihilation operator g, =Z ±'b/I 

contains a coherent signal [18,45].Hencewifhout loss of generality, we 

often need to consider only one properly chosen normal mode of the 

received field. 

Quantum-Mechanical Receiver 

In an ideal receiver, the signal field accompanied by the chaotic 

thermal noise is admitted through the receiving aperture into a lossless 
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cavity during the signaling interval (0, T). At the end of this interval, 

the aperture is closed, and measurements are made by the receiver 

on the received field, whose quantum-mechanical description has just 

been presented. 

We shall assume that the neasurement made by the receiver is 

ideal. Again, an ideal measurement is one in which the state of the 

field after the measurement does not depend on that before the mea­

surement. It follows that the probability distribution of the 6utcome of 

any subsequent measurement does not depend on the transmitted input 

message. That is, any measurement made after an ideal measurement 

yields no information relevant to the optimum estimation of the trans­

mitted message [46]. 

It will become apparent that the optimum performance of the system 

is independent of the time - after the receiving aperture is closed - at 

which the observation is made. The choice of the observables measured by 

the optimum receiver does depend, however, on the time of the obser­

vation. 

The ideal receiver that we have discussed thus far might seem to 

be much too remote from an ordinary receiver to be relevant to a real 

optical communication system. A real optical receiver takes in light 

from the signal source, along with thermal radiation, through an aperture 

of fixed size.,* and processes this light by lenses, photodetectors, and 

possibly coherent heterodyning light generated by a local laser. The 

data upon which it bases its decisions are the values of observables 

of the electromagnetic field at the aperture during the interval (0, T). 

The field in the cavity of our ideal receiver is a linear functional of 

this aperture field. The optimum performance derived for the ideal 

receiver really sets a limit to the performance of any optical receiver 

processing the same aperture field. 

When the signal radiation occupies a narrow band of frequencies 

and arrives from a narrow cone of directions, and when the background 

radiation is distributed broadly in frequency and angle, the quantum 

detection theory developed for the field in the ideal receiver can be 

applied to the aperture field itself. The important entities in that theory 
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are the annihilation and creation. operators for the mode fields and the 

Hilbert space spanned by their eigenvectors. Operators having the 

same properties can be defined for the aperture field by represent ing 

it as a superposition of spatio-temporal modes. Just as the mode func­

tions for the cavity field are orthonormal with respect to integration 

over the three-dimensions of the cavity, these spatio-temporal modes 

are orthonormal for integration over the aperture and the observation 

interval (0,T). The eigenVectors of the associated annihilation and 

creation operators span a Hilbert space of state vectors to which the 

concepts and techniques that wve have outlined can be applied [47,48]. 
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IV QUANTUM DETECTION THEORY 

When the data source in Fig. I is digital, the input in to the trans­
mitter in the signaling interval (0, T) is one of M messages denoted 
mi, 2 .... mM. When the transmitted message is mj, the electro­
magnetic field in the receiver cavity is in the statistical mixture of 
states specified by the density operator pj. Therefore, in the time 
interval (0, T), the state of the received field is specified by one of 
M density operators pl, pZ ... PM 

A 
of the system is also one of M messages, and is the'The output m 

estimate of the input message in. That is, the receiver decides in the 
time interval (0, T) among the M hypotheses H1 , H 2 , ... HM of which, 

the hypothesis H. is that the message m. is transmitted. The receiver
 
3 I
is designed so that the probability of error 

(-75)Pe =Pr[A~ m] 

is minimum. 

Let X =JXI, X 2. ... XL) denote the L-tuple of Hermitian operators 
.corresponding to those observables chosen to be measured by the 
receiver. When these operators commute, a simultaneous measure­
iment of the corresponding observables yields aii L-tuple xn = 
(Xln, Xan .... XLn) of parameters, where X. is an eigenvalue of the

Zn'nin 
operator X.; j = 1, 2, ... L. For simplicity, we assume that the eigen­
,spectra of the operators X. and p. are discrete. That this assumption 
imposes no real restriction has been pointed out in Section II. 

Let Ix) denote the simultaneous eigenvector of the commuting 
operators X1 , X 2, ... XL corresponding to the eigenvalue xn . From 
(23), the conditional probability that the outcome of the measurement 
of X is xn, given that the message in. is transmitted, is 

P(Xn Imj) = Xn Pj n). (76) 

Let L be the prior probability of the message mi., and p.n be the 
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probability that the receiver chooses the hypothesis H. when the out­

come of the measuremenit is x 

•M
IPJn (77) 

j=l 

The probability of error in (75) is 

M 

Pe -
n Nil 

jPjn(XnIPjLn). (78) 

The manner in which the optimum receiver processes the data 

obtained in the measurement is the same as that determined by the 

principles of classical detection theory [49]. Specificaly, the receiver 

chooses the hypothesis H. to minimize Pe when the observed value of 

X is x n if the conditional probability 

P (m 26) = P(I in) Imi) 

is maximum. In other words, the probability pjn is I for all n such 

that 
.(xn p jIx > n(xI PijXn, all i# (79) 

-n jn i-n 

and all other Pin equal zero. This rule becomes ambiguous when the 

equality sign in (79) holds for some i. The ambiguity canbe resolved, how­

ever, and the resultant minimum value of P is not affected by the way
e 

in which this ambiguity is resolved. 

Let us define the operators I1i as 

njI Pjn j = 1,2 ... M. (80)In 
n 

Since the probabilities Pin are either pne or zero, the operators 1 i are 
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projection operators; therefore, thet obey the defining equation (14). 
Moreover, it follows from (80), and that pinPjn equals zero when i # j, 

that 

Ei9= Ii6ij (81) 

and 

M 

(82)1 = 

j=1
 

In terms of the projection operators 1Ij, the probability of error P in 

(78) becomes 

M 

P = 1 Tr [pJI.]. (83) 

j=1 

Therefore, the problem of finding the best receiver structure becomes 

that of finding the projection operators 11. that satisfy the constraints 

(81) and (82) and minimize Pe 

It has been shown [50, 51] that a necessary cond{tion for the set of 

projection operators 11.a satisfying constraints (81) and (82) to minimize 

P in (83) ise
 

M M
 

I%ThI I= (84
j=l j=l
 

This equation, together With the conditions 

SYii- tjJae positive sbmidefinite .(85) 
for all j = 1,2,....Mji I 

provides a sufficient condition for the set of projection operators II. to 

be an optimum solution. 
When the projection operators i.have a complete set of eigenvectors

-3 
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in common, they can be taken as observables of the field, and the 

receiver measures them simultaneously. Hypothesis H.3 is chosen when 

the observed value of I] is equal to 1. Because of (8Z), an optimum 
receiver in a binary communication system is specified simply by one 

projection operator I. 1 

When the receiver is allowed to make ideal measurements of incom­

pgtible observables in the sense discussed in Section II, the structure 

of the receiver is specified by the overcomplete set of measurement 

state vectors, {Ix )} when the outcomes of the measurements are x 
Since with {1jxn} given, the probabilities Pjn are determined by the 

rule (79), the problem of finding the optimum receiver structure is that 

of finding the overcompl6te set {IXn)} to minimize 

P -w max j XnIPjJXn) (86)e~ ~ I 1:j<M n 

Very little is known about the solution of this minimization problem. 

When only orthonormal sets of measuremeit state vectors &re allowed 

as solutions, this problem is equivalent to finding the operators fl., .sub­

ject to constr.aints (81) and (82) to minimize Pe in (83). In general; the 

two maximization proklems are not equivalent. [5Z]. 

To find optimum receivers in many communication systems of. 

practical interest, there is no need to consider ideal measurenents of 

incompatible observables. It can be shown from the completeness (32) 

of { I*>I that in all binary communication systems and in those M-ary 

systems in which the density operators p3 commute, optimum receivers 

measure observables corresponding to Hermitian commuting opera­

tors [53]. 

35
 



Binary Detection 

We are concerned here with binary communication systems in which 

the input message in the time interval (0, T) is either the digit "1" or 

the digit "0". A digit "1" is represented by the presence of a signal 

pulse of duration T; a digit "0" is represented by the absence of the 

pulse. Therefore, in the time interval (0,.T) the ideal receiver 

chooses between two hypotheses: (Ho) "the field in the cavity is due only 

to thermal radiation," and (H,) "the field contains besides thermal radia­

tion a signal of some specified form." The best receiver is' one that 

enables the choice between the two hypotheses to be made with minimum 

probability of error, 

Hypothesis HI represents a proposition that is either true or false. 

We have seen that such propositions are decided by measuring a pro­

jection operator I1. The outcome of Ihe measurement is one of the two 

eigenvalues of 1U, 0 or 1. If 1, hypothesis H I is adopted; if 0, Ho. The 

question remains, however, which of all of the projection operators I1 

that exist for the received field is best. It is answered in the same way 

as classical detection theory: We must use the operator for which the 

average probability of error is minimum [15, 18,54]. 

Under hypothesis H 0 the normal modes of the receiver are excited 

only by-random noise; they are in a mixture of states described by 'a 

density operator p0 such as the one exhibited in (62). Under hypoth-, 

esis H1 the normal modes are in some other mixture of states described 

by a density operator p1 such as the one in (63). Let be the prior 

probability of hypothesis H . The average probability Pe of error in 
0e 

(83) can be rewritten 

n
P Tr [p' ] + (-{)[1-Tr [p1I1] 1 

= (1-)f1-Tr[(p1 -Aopo)l]}, A,= /(1-). (87) 

This quantity is to be minimized by properly choosing the projection 

operator 11. The minimizing operator we call the detection operator. 
We have put P in (87) in such a form that the problem of maximizing 
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Tr [(p 1-AoP)I] 

is clearly equivalent. 

Let 'qk be the eigenvalues, and 11k) the associated eigenvectors of 

the operator p1 - Aopo. 

(pi-Aopo) In = 1lk)"J110 (88) 

Then 

Tr [(p 1-Aopo)f]: ('&kI(pl-AoPo)flIlk)3 
k 

= I lk( lk 1l]Ink) . (89) 

k 

This quantity is maximum for that projection operator for which 

and the(nkiI71fk) = 1 when k > 0, and (kIlHk) = 0 when 1k < 0, 

projection operator that fulfills the requirement is 

(90)D = U(rk)I-lk) (ikl, 

k
 

where U(x) is the unit step function. 'The. average probability of error 

is then 

Pe= (1-0 ,V- lkU(lkj (91) 

Prescription.of the optimum receiver is simplest when the density 

operators p0 and p1 commute. The vectors Ilk) are then identical with 

the eigenvectors I k) common to both p0 and p which can now be 

written 
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k 

k
Z(J)Y1. (92) 

In fact, the eigenvalues of p1 Aopo are- Aik 

(93)
k k_ A p0)
P(1) 

Ifthe system is in such a state I k) that 1k> 0, or equivalently, 

Pk )/Pko >'Ao 

hypothesis H I is chosen; otherwise H is adopted. This is just the 

classical likelihood.-ratid test. 
Suppose, for instance, that the signal has the same statistical prop­

erties as thermal noise, placing an average number N of photons into s 
a single mode of the receiver and none into any of the others. Only that 
mode needs tb be observed, and we assume that under hypothesis H 

0 

it contains thermal noise with an ave'rage number X' of photons. The 

density operators under the two hypotheses then, by (59), are 

'Im) (ml, 

m=O
 

Pi= (1-vi) Vi i=0,1, (94)
 

where 

v° = 4/(_4+l), v, = (X+Ns)/U(4+N s + 1). (95) 

These density operators commute, and since both commute with 

number operator a a, itsuffices for optimum detection to count the 

number in of photons inthe mode. The likelihood ratio is 

P ( )/p(0)=o -- (v-1/vo)mm--
V )m 
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and it is decided that a signal is present whenever this ratio exceeds 
A = /(i-); that is, when 

o1v Fi - in in (v 1/vo)-

The probabilitv f t-rnnr ig th 

P = [oM1+1 + (-u)(i-v [M]+l) (97) 

where '[M]. is the greatest integer in the decision level M. 

a. Choice between Pure States 

When the density operators p0 and p1 do not commute, it is neces­
sary to solve the eigenvalue equation (88) before the structure of the 
optimum receiver can be specified and its performance assessed. 
This is generally very difficult. In a special case that can be solved 
exactly, the received field is in one pure state 1410) under hypothesis 
H and in another, Jtp1), under H1 . The density operators are 

j%)>po1,Po = ( p1 = (98) 

Unless jlso) and ftl) happen to be orthogonal, p and p1 do not com­
mute. An example is the detection of a coherent signal in the absence 
of any thermal radiation. The eigenvectors hi) are now linear com­
binations of 'Lfo) and f.W1>) 

aisooai 0 + a.l 1 i = l,'. (99) 

Only two eigenvalues differ from zero, and they are found by sub­
stituting (99) in. (88) and setting the determinant of the coefficients 
in the -resulting pair of simultaneous equations equal to zero. The 
minimum average probability of error is found to be [16, 55] 
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Pe= (1-0)L±-.(l+Ao) -.Pj 

4 }jl/1P{[=(1-A)]z +A 

= - J(JP) (100) 

In the detection of a coherent signal occupying a single mode in the 
absence of thermal noise, the states JIo) and fIfi) are, respectively, 

the coherent states 10) and JiL), where [IiZ = N is the average­

number of signal photons. Then in (100), by (53), 

Z == - (Ojj±1j 1 -exp(-Ns). (101) 

The error probability Pee is plotted in Fig. 2 againist the signal-to­

noise ratio 

/ Z  D = [4Ns/(ZAY+l)1 (102) 

as the curve marked XY =0; the prior probabilities were taken as 
= 1 - = i/Z, and A ° = 1. This signal-to-noise ratio D goes into 

1I / z , the classical sighal-to-noise ratio, [2 N gliw/K in the limit 

21w <<KY9 

b. Detection of a Coherent Signal in Thermal Noise 

When the mode excited by a coherent signal also contains thermal 

noise of absolute temperature , the density operators p and p1 

take the forms in (57) and (60), respectively. An exact solution of 

the eigenvalue equation (88) with these density operators has not 

been obtained. It is possible to solve it approximately by using the 

matrix representation of p1 in (61) and diagonalizing a truncated version 

of the infinite matrix by means of a digital computer. Figure Z gives 

the error probabilities so obtained; the largest matrix found necessary 
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- -

used the first fifteen rows and columns of the infinite matrix 

(nI(pl-Ao 0po) I . 

When the average number .4 of thermal photons is very large, 

the classical limit is approached. The classical detector of a sig­

nal of known phase in thermal noise corresponds in this model to 

measuring the component of ihe operator a along the phase of the 

signal. If w& take, without loss of generality, the phase arg 1 as 

zero, the classical detector measures the operator Q and compares 

it with a decision level.' The probability density functions of the out­

come q under hypotheses H and H, respectively, are [561 

= (Ziro21/Z exp[-qZ/Zo
2
 

P (q)= <p 1a)0 
/

and 

PI(q) (alp 1 la) = (ZiraZ )-i/Z exp[ {q ( 21 /w )1 /Z4 Z /ZZ], 

where M now is real and a = + W. 

The decision level q with whiqh q is, compared is determined 

from the likelihood-ratio formula, 

(103)P 1 (o)/P.o(qo) A 0 

It is not hard to show that the probability of error by using this 

classical detector is 

P erfc (b 6 - + D - lnAo)-(Il-) erfc (i-D_lDlnAo)) 

(104) 

where D is given by (101) and 

erfe x = (Z7r)- 1/2 exp(--t2 /Z) dt (105) 

1 

is the error-function integral. For = the error probability is simply 
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P= erfc D), (106) 

which has been plotted against D in Fig. 2 as the curve marked 
X = oo. This classical detector can be used at any value of _t1, but 

it suffers a higher probability of error than the optimum detector. 

The difference between the two detectors vanishes rapidly once the 

average number X of thermal photons in the mode becomes of the 

order of 1. 

If the signal occupies many modes of the received field, the 

problem appears much more complicated. If it is a narrow-band 

signal, however, all 'of the modes excited by the signal will have 

nearly the same average number X5 of thermal photons. It is then 

possible to combine the amplitudes of those modes linearly in such 

a way that the resulting field amplitude contains the entire signal, 1_ effect 

creating a new mode matched to the signal, as discussed in Section Ill. 

By means of other linear combinations a new set of modes orthog­

onal to the -matched mode and containing no signal excitation is 

formed. The problem is then reduced to detection of the signal in 

a single mode and the results just derived apply [57]. 

. If the absolute phase 4 of the signal is unknown, as will happen 

if no attempt is made to maintain phase coherence between trans­

mitter and receiver, the density operator p1 must be averaged with 

respect to this' phase. In the least favorable situation, the phase is 

a random variable uniformly distributed from 0 to Zw. 

The elements of the matrix (nIp1 im) specifying p1 in the numoer 

representation are given in (61). When we average with respect, 

to 4) over (0, Zr), all of the off-diagonal elements will be zero. The 

average density operator ( p,.) then, like po. is diagonal in the num­

ber representation 

k=0
 

with 

4Z
 



j = (l-v) k exp[-d-VN Ln1 

N s = 4d, (108) 

-where Ln(x) is the ordinary Laguerte polynomial. 

The optimum receiver, therefore, simply counts -the number of 

photons in the matched mode and compares it with a decision level 

determined by the likelihood-ratio formula (103). The average 

error probability can be computed from (108) [58]. Curves calculated
1
b 

for = (I-) =- by digital computer are given in Figs. 3 and 4. In 

the limit X = c the error probability coincides with that of the 

classical detector of a signal of random phase. 

M-ary Detection 

In general, there may exist no solution to the problem of finding pro­

jection operators I1j, satisfying the constraints (81).and (8Z), to mii4­

mize the probability of error Pe in (83). Here, our- attention will 

be confined to the special case in which the density operators pj 

commute. For this case, the projection operators li., which satisfy 

the sufficient conditions given by (84) and (85), can be written 

Il Pin I* I)nn1, (1-09) 

n 

where I n are the simultaneous eigenvectors of the density operators 

p j 1, 2, .. "'" Let p() the of the density oper­= M. Pn denote eigenvalue 

ator pj corresponding to the eigenvector In. For any j = 1, Z, V.1 

and n =, Z..... the probability P.n in (109) equals 1 if 
(J) tip(i) for all i * j, and equals zero otherwise. 

j n , n 
For simplicity, we assume that the M messages mi, m 2, . m 

occur with equal prior probabilities. Therefore, the information
 

rate R, in nats per second, of the communication system is
 

R = [lnM]/T. (110) 
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a. 	 Detection of Orthogonal Signals with Known 

Amplitudes but Random Phases 

Let us envision an M-ary communication system in which each 

transmitted message is represented bya signal pulse of duration T 

with known classical amplitude, but 'an unknown absolute phase. 

Let z denote the direction of signal propagation. When the signal 

field, is not modulated spatially and is linearly polarized, its clas­

sical waveform at ,the, receiver can be described by the function 

ZR [Sit) exp{i0(/c-tl+i1j ]. 

where S(t) is one of a set of complex time function {Sj.(t)} depending 

on the transmitted message. The absolute phase . of the signal is 

taken to be a random variable uniformly distributed over the interval 

(0, .Z). In particular. -we assume that the functions Sj(t) are 

essentially narrow-band' [59] orthogonal time functions over any sig­

naling interval, 

S(t) dt = ..; ij.= 1,2,... M. 	 (111) 

To describe this signal set quantum-mechanically, we regard the 

received field to be a superposition of plane traveling-wave modes­
-with iorinal mode functions V 1/ exp[-iwkz/c]. When the transmitted 

message is i., the received field would-be in one of the doherent 

states fl 4.jkei") in the absence of thermal radiation. The complex 
.k 

amplitudes 1jk of the individual modes are known and are related 

to the waveforms Si(t) by 

S(t) = (ho 2n/EV)/Z iijn exp[i(wn-Wo )(Z/c-t)]), j = 1, Z, ... M. 

n 

In m6st practical systems, the width of the frequency range of interest 

is small compared with the carrier frequency w0; therefore, 'we may 
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assume that for all n for #hich jn # 0,. 

ni 

Since the complex functions S j(t) are orthogonal, the complex ampli­

tudes jn satisfy the .condition 

11 1,Z,... M. (,1131kn 6 

n
 

Zljn= jk = 

In the presence of an additive thermal-noise field, the received 

field is the mixed state specified by the density operator 

p. = II- ex[l I elk 11 a aI ak/ra4'k (114) 

when the input message is m.. Since by (11Z), the average nunolSers 

/k of thermal photons in different modes are approximately equ4, 

-4 z X/, the density operators p, are commutative [60]. For thek 


reception of these I signals, the optimum receiver measures simul­

taneously the projection operators I1 in (109). Equivalently, it mea­

sures the numbers of photons in the M modes associated with normal­
2 ,mode functions Sjt)/E and with annihilation operators b. = 

[Ljnan/I I, where [61]
 
n
 

n 

When the outcome is n = (n, nzi h eM), hypothesis Hj, the trans­

mitted messagem, is chosen ifthe conditional probabilityP(nrn.) 

is the largest among all j. For M signals with disjoint frequency, 

spectra, as in a frequency-pcsition modulation system, the optimum 

receiver can be implemented as shown in Fig. 5. The function of the 

mode transformation filter is similar to that of an optical matched 

filter [6Z]. The optimum receiver for a set of pulse-position modulated 
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signals is simply a direct detection system. 

To compute the performance of this system, we shall assume 

for simplicity that 

Li pT. (115) 

Since I j jZ is the average number of photons in the signal field 

when m. is transmitted, p is the average number of signal photons 

arriving at the receiver per unit tine, which by (115) is independent 
of the transmitted message. In this case, the probability of error, 
P e, can be bounded [63] as 

K_ exp[--TGEtR < Pe< KI exp [-T CE(R)], :116) 

where the coefficients K and Kz are not exponential functions of T. 
The information rate R is given by (.110), C is the channel capacity,2 

and the exponential factor E(R) is the system reliability function. 

The channel capacity C is found to be 

C p In(+l/X); = 

P(117) 

where P = pli. is the average received signal power, 71 = Iic is 
the so-called zero-point fluctuation energy, and Io= sliw i' the 

average thermal energy in each mode of the received field. In thE 
classical limit with X/ >> 1, the channel capacity. C is approximatel3 

equal to Cc = P/1 0 , the capacity of the classical additive white 
Gaussian channel with no bandwidth constraints [64] and with noise 

spectral density '110 z K-r 
For rates R -in the range 0 HR R., where R is given by 

Re/C =.A'i1+S4)1(1+ZM, (118) 

the system reliability function E(R) is bounded frorm below by 
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E(R) > [(1+z.) In(1+/+1 <)]-I - R/c. (119) 

For rateb 17, III we- rnge - R C, the reliability function E(R) 

is given- by 

-1E(R) = {.W/Vn(1+1/V)} 1 + ZM'it/C - [1+4Rb/(l+.M)/G] / 

1 - [l+4Rd(l+JX)/Cj1/2 

I + R/C + [I+4RsV(I+V)/C] 

-in (10 

The general behavior of the system reliability function for several 

different values of XV is shown in-Fig. 6. In contrast to the cor­

responding classical additive white Gaussian channel, E(R) depends 

not only on I/C, but also on the average noise level X1/ 

When .4' =. 0, the channel capacity C in (117) becomes infinite, 

while E(R) approaches zero. The probability of -error becomes 

Pe zexp[-Tp]. (121) 

The fact that P is independent of the -number M of messages when 

41 equals zero implies that an arbitrarily small probability Of 

error can be achieved at an arbitrarily large information rate for 

a finite number p of-photons per second ini the signal field. Since 

signals are orthogonal, however, the average power in the signal field 

grows linearly with the number of input messages when p is being held 

constant. Hence the small probability of error is accomplished 

only by an accompanied increase in the power 'of the transmitted 

signal. It is more meaningful to deriire the expressions of the channel 

capacity and the system reliability function under the assumption 

that the average power in the signal, 7 Lji(hWk)l/Z 1/T, is held±. 
n -n
 

constant indepehdently of the transmitted message. Unfortunately;
 

analytic results cannot be obtained in this case. 
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It has been shown [65]' heuristically, by use of the uncertainty 
principle, that, with no bandwidth constraints, the channel capacity 

has an upper, limit -I(P/h)/ where P is the average signal power, 

- and / is a number that approximately equals "2. 

b. 'Detection. of Orthogonal Signals in a Rayleigh Fading, Channel 

We now consider a communication system in which the received 
field in the presence of thermal radiation is in the completely inco­
herent mixture of states described by the density operator 

pj =[det y IS. exp M71nmM V± 
P~ de,..jV5..5ePL~IZat( a~f ja-)(aj d? a >7M 

(lZ21
 

when the transmitted message is i. In this expression, . is the
 

mode correlation matrix whose elements are
 

TrT p. a - L in (123) 

where '-I is the average number of thermal photons in each normal 

mode. (t) . are elements of the mode correlation matrix in the 

absence of the thermal radiation. When the signals have orthogonal 
classical wa-eforms at the receiver, the mode correlation matrices 

4' commute, and therefore the density operators pj commute; The 
commutativity of the matrices 4j implies the existence of unitary
 

transformation V such that the matrices
 

R. = V+V, j = 1, ... M, .(124) 
- ~j­'-3 

' 
are diagonal. When the elements of 4) are given by (123), the kth
 

diagonal element of the niatrix R. can be written
 

[R = ,.4/ + Sjk j=, Z ... M. (1Z5) 
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The system described above can serve as a quantum-mechanical 

model of a diversity transmission system in which signals are trans­

mitted over a-Rayleigh fading channel. When .a signal pulse with 

classical waveform- S (t)cos w t is transmitted through such a chan­
-

- 0 

nel, the classical waveform of the received signal is xS.(t)coS (Wot+44, 

where x and 4 are sample functions of random processes such that 

at any time t and any point r, x(r, t), and t)r, are Rayleigh­

distributed and uniformly distributed random variables, respectively. 

(For simplicity, we suppose that in a given signaling intervalpand over 

the receiving aperture, they dan be considered as constant random 

It has been shorn [66, 67] that the probability of error invariables.) 

the reception of orthogonal signals transmitted over a Rayleigh fading 

channel can be reduced by making several transmissions for each input 

ormessage. These transmissions are spacedeither in time, space, 

frequency so that fadings experienced by different transmissiqns are 9ta­

a system is called, a diversity trhnsmissiontistically independent. Such 

system. The density operators p, in (122) describe, quantum­

the received field in a diversity trafnsmission system inmechanically, ­

which each input message is represented by several narrow-,and sig­

nals with orthogonal classical waveforms [68]. In (1Z5), sjk is the 

average number of signal photons received at the end of the kth 

diversity path when the message .mj is transmitted. Let v denote 

the number of diversity transmissions; for each j, s ! 0 only
 

for v of the possible values of the subscript k.
 

Without loss of generality, we confine our discussion to frequency­

diversity systems in which frequency-position modulation is used;
 

of the signals are disjoint. The optnimm
 
the frequency" spectra 


receiver for the reception of these signals measures simultaneously
 

the observables corresponding to operators bnbn where b = 
n n' n
 

z V a; V are the elements of the matrix V in (124). .' The
 
rd4 

nk'
k nk kc operators in terms of whose 'rightoperators ak are the annihilation 

eigenvectorS p is expressed in (122). Again, hypotheses are chosen 

by using the decision rule (79). 

The performance of such a system has been evaluated when the nun­

ber of signal photonssjk are equal [69] 
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Sjk = s 	 (126) 

for j = 1,2,... M and all k for which sjk 0. For the narrow-band 

signals considered here, (126) also implies that the signal energies in 

the v diversity paths are equal, as in an equal-strength diversity sys­

tem. For this special case, the structure of the optimum receiver 

simplifies to that shown in Fig. 7. 

Just as in the case of known signals in thermal noise, the bounds of 

the probability of error Pe can be expressed as in (116). The quantity C 

given by (117) is the capacity of the system in which signals are in 

coherent states. The average number p of signal photons per second 

equals S/T in this case, where 

S = us 	 (127) 

is the total number of photons transmitted through -,vdiversity paths. 

The system reliability function E(R) is the solution of the maxiini 

zation problem, 

E(R) = max {e(, s)-6R/C} 
0< 61<1
 

6
 
-%
 

e(6s 	 {(1+5) ln I+ (sV+s) - ( 1 + + s 
-Sin In (1+l/X). 

As in the case of coherent signals, the reliability function depends 

not only on;.the signal-to-noise ratio sl/., but also on the average 

noise level X' and the number of diversity path v.' The optimum 

reliability function E0(R) is obtained by maximizing the function E(R) 
in (128) with respect to v, or alternatively, with respect to s. Let 

s denote the value of s that maximizes the function e(6, s); then 

E°(R) = max {e(6,s°)-6R/C} 	 Y (129) 
04<60<I
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°
 if the value of so does not exceed S. When s0 is larger than S, we 

have 

E0 (R) = max {e(6, S)-6R/C}. (130) 
0<6<i1 

This maximization problem has been solved numerically., The 
° 

results are shown in Fig. 8, where the optimum average number s of 

signal photons per diversity path is plotted as a function of I/C for 

.A" 0. 1 and 4= 10. Also shown in Fig. 8 is the value of s° in 

the classical limit [70]. The values of s0 /vV for rates R less than 

R0 are independent of l/C, but they are functions of the average
c 

noise level _4. If the effective noise in the system is taken to be 
I
(X+l!), the optimum ratio s°/(X is roughly 3 for R < RO 

independent of the value of 4. 

For rates greater than R the value of s increases rapidly 

with R/C. That is, for a fixed value of S, the optimum number 

of equal-strength diversity paths decreases at information rates'highqr 

than R c °. From Fig. 8, it is .clear that for increasing;l/C, so 

increases 'without bound. Hence, when the average number of trans­

mitted photons is fixed at S, a point where the value of s is equal 

to S will eventually be reached. That is, the optimum value of V­
°
 is equal to one. The rate at which S,= s0 is called the threshold 

rate for the given value of S. 

Let us assume for the moment that for any given value of R/C, 

S is large so that S/sO is larger than 1. In this limiting case, the 

optimum value of.E0(R) as a function of R/C is given by (130). Thd 

general behavior of E°R) at rates above the threshold is given by 

Fig. 9 for different thermal noise levels. The reliability function 

for the optimum -classical fading channiel is also shown for comparison. 
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V. QUANTUM ESTIMATION TI-EORY 

The communication 	systems treated thus far transmit information 

into symbols from an alphabet of two or moredigitally by encoding it 

designed to make decisions-among two or moreelements; the receiver is 

It is also possible to transmit informationcorresponding hypotheses. 

into the amplitude of the signalon a continuous basis, by encoding it 

into its carrier frequency (pulse-frequency(pulse- amplitude modulation), 
The receiver ismodulation),- or into its epoch (pulse-time modulation). 

but of estimation. The infor­then confronted with a task not of decision, 

mation to be extracted appears as a set of parameters 8 = (0lez'..OM) 

of the received field. 

In studying classical communication systems, we assume that the 

as much detail as we wish inreceiving aperture field can be sampled in 

= (x I , x2 , ... Xn,.. )of data having a known joihtorder to generate a set x 

which depends on the information­probability density function P(x, 6), 

applied to determinle anbearing parameters 6. Estimation theory is 

some cost fiunhtionestimator 
A 
O(x) of the parameters that minimizes 

A a setC(2, 0), which measures the cost to the experimenter of assigning 

of estimates 
A 
6 to the parameters when their true values are 6. Examples 

of commonly used cost functions are the mean-square error and the 

For the purpose of finding the best estimator, it isabsolute error [71]. 

usually necessary to provide a prior joint probability density function 

z(2) of the parameters, Which represents the distribution of relative fre­

quencies with which 6 will appear in certain ranges of values in the
 

As an example of the preppriptions
communication system envisioned. 


we mention the maximum-likelihood
derived from'estimation theory, 

estimator, which assigns as the estimate of a parameter 6 that value for 

which P(x, 6) is maximum, the prior probability.density functipn z(6) 

being assumed very broad. 

described quantum- mechanically,When the communication systen" is 


the received field is described by a density operator. p(e), which is a
 

function of the unknown parameters 0. Ifthe receiver measures
 

observables corresponding to commuting Hermittan operators
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X = (X 1, X... XL). the joint conditional ptobability density function of 

the outcomes x = (Xl, XZ.....XL) is given by 

P(x1O) =(x!p(O)I X. (131) 

Again, Ix)are the simultaneous eigenvectors of the operators X cor­

responding to the eigenvalues x. It follows that the joint probability 

density function of the parameters 0 and the observed data x is just 

P(x,E)= z(e)(xi p() x). (13Z) 

A 
The optimum estimation function 6(x), whidh assigns the data x to an 

A 
estimate 6 of the parameters, can be determined from classical esti­

mation theory. Our problem is, therefore, that of finding the operators X 

whose orthonormal set of eigenvectors {j x)} is such that the average 

cost 

A
 

is minimum. 

Alternatively, "The values of the parameters 6 lie between 01 and 
' 6' + A01 is a propositibn of the kind described in Section II [7Z]', If the 

range of possible values of 0 is broken up into contiguous, but-nonover­

lapping intervals AG, and if the entire array of corresponding proposi­

tions is tested, one of them must be declared true and the rest'false. 

The result is an estimate of 6 within an uncertainty AG, which in 

principle can be made as small as we like. When the observables mea­

sured by the receiver correspond to commuting Hermitian operators, 

each such proposition is associated with a projection operator, .which we 

denote AE(0') for the range (" E)'+A2'). These projection operators 

commute and add up to *theidentity operator 

E(2')=i. (134) 
6' 

Passing to the limit A0' - 0, we speak of a resolution of the identity
 

IE(6'), with
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dE(O ) = 1, (135) 

and this resolution is in effect an estimator of the parameters 0. 
The probability, 0 being the true value of the parameters, that the 

estimates lie between 0' and 0' + dOl is Tr [p(0)dE(0')], and the average 
cost is therefore [73]} 

Z(8)) C( a, E) Tr [jp()dE(e'f)) deO. (136) 

This average cost C is to be minimized by choosing the resolution of the 
identity, dE(O'), over the entire range of possible values of 0'. 

When the receiver makes an ideal measurement of incompatible observ­
ables as discussed in Section IL. its structure is specified by a complete 
set of measurement state vectors {fxA-, when the outcome of the mea-' 
surement is x. For a given set of measurement state vectors { x>}, the 
manner in which the receiver assigns to the data x an estimate is 
prescribed by classical estimation theory. Our problem is to find the set 
of measurement state vectors {Ix)} to miniimize the average cost' function 
in (133). Since very little is known about the solution to this problem, we 
shall not be concerned with it hereafter. 

In the following discussion, the cost function with which we shall be 
solely concerned is the mean-square error of the estimate 

"A 2 
E= 3](137) 

The specification of the measured compatible observables X and the 
estimate functions 2i(x) can be combined in the specification of quantum-

A A A 0 0mechanical estimators C) (8 1 , z . . . . . GM) of the parameters 1 , ... M, 
where 
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e.=5e:(x) IxPQI dx 

= !edE(O'), (138) 

These operators are Hermitian and commutative, 4 being the simul-
A 

taneous eigenvectors of X. A measur'ement of ei yields an estimate 
A 
0. of 0.. The mean-scuare error E in (137) becomes 

M
 

E(e) z(o)Trp(OE) 1 I)1) dE (139) 
1=1 

when e is a set of random parameters with prior probability density 

function z(2). When 6 is a set of unknown parameters whose prior 

probability density functions are unknown, estimators are sought that have 

small or zero bias al at the same tire have a small mean-square error 

over a broad range of true values of the parameters. The bias of an 
A 

estimator Ei
1 

of a parameter 8.
1 

is 

(Al - = r [®ip(e)] - f ('140) 

The mean-square error is 

E Tr E 1)2] (14i:) 

The problem of finding commuting Hermitian quantum-mechanicalA 

estimators et to minimize the'mean-square error E(G) has not been 

solved for density operators p(O) that do not commute for different 

values of the parameters 0. When the density operators commute, they 

possess a common set of orthonormal eigenvectors, I ).-In other words, 

(O) .pn() l(tnl 
n 

A'- A A. 
The quantum-mechani&al estimators 1 2 ... a * that minimize the 
mean-square error in (139) and (141) can be written 
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E. 
I"j( (142)
 

6i(n) is just the conditional mean 

A 

ei(n) Siz(O) Pn(8) do z(O') Pn(0)dr} (143) 

when the parameters gre random variables. 
Suppose that we wish to estimate the signal strengths of different 

modes of the received field described by a density operator 

PO6) = 5 1 (X+s 1) (ki d 2 ak/ (X+ Sk).-f 1Y exp[- I akI 0 

k= 1
 

The p'arameters S are identified with the average numbers s of signal 
photons in the different modes. As discussed in Section IV, sk can be 
considered as the signal strength in the kth transmission through a 
Rayleigh fading channel in a diyersity system. Since for all vaues of ski 
the eigenvectdrs of p(~) are n n ... n); the simultaneous ejgen­
vectors of the number operators akak, it suffices to measure the opera­
tors ak ak. The outcome n = (n1 , n 2 ... nV) of this measurement is a 
sufficient statistic [74] whose joint probability is 

n, 
s kI= 1 -v)v

j=1 ~J J 

vj = (S/+Sk)/(F+ V+Sk). (144) 

In this equation, -A is the average number of noise photons. The outcome 
of a measurement of thp operator a ak is an unbiased estimate of the sum 
X + s k . By subtracting the known value of .XW, an unbiased 
estimate of s k is obtained, which happens to have the smallest possible 
mean-square error. 

It has been shown [75] that the quantum-mechanical estimator G
A 

of a 
single random parameter 0 with a prior probability density function z(O) 
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that minimizes the mean-square error, satisfies the operator equation 

A A 

Fe + er=zTij (145) 

when the operator 

r : 5 z(e) p(O) dO (146) 

is positive definite, and tl = j ep(O) z(O) dO. Moreover, the optimum 
A

estimator e is uniquely given by 

® 25 era ier da. (147) 

This result can be used to find the optimum-quantum-mechanical 
mean-square-error estimate of the complex plane-wave envelope m(t) 
in double-sideband modulation [76]. Since m(t) can be represented by 
its Karhunen-Lo~ve expansion 

m(t) = kSk(t), (148) 

k 

the problem of waveform estimation is reduced to the estimation of the 
random parameters nik. When the bandwidth of m(t) is very small 
compared with the carrier frequency w, the density operator p({mk}) 

describing the state of the received fields is 

P({mk})=Sexp1 LI k(ZE°V/liw)i/2 M r] n'kki d2 Pk/rs; 

where the vectors IPk) are the right eigenvectors of the annihilation 
operators bk associated with the modes with normal-mode functions skj(t). 
When the prior joint probability density function of the parameters 

mk is 
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P({mk}) = 11 (Z-k)-1/2 exp[-mk/2Xk]. 
k 

the minimum mean- square- error 'estimator Ak of mk can be found from (147), 

8= (bk + bk)x/xQa+XX 

l
(fl /ZEV)1/2x = 

A 

The mean-square error associated with the optimum extimator Sk is 

k = [ kk-(k) (zx) 

which is the same as the classical estimation error in white noise, 

whose spectral density is (V +})iw [?7 

Quantum-Mechanical Cramr-Rao Inequality 

a. Single Unknown Parameter 

Although the best estimator of a parameter e, given the density 
operator p(8), has not been found in general, a lower bound can be set 

to the mean-square error attainable by any estimator. It is the quantum­

mechanical counterpart of the Cram~r-Rao inequality of classical 

statistics [78, 79]. 
AALet E be an operator whose measurement yields an estimate 9 of 

A
the parameter 6. The expected value of the estimate 
value of the parameter is 0, 

0, when-the true 

46] Tr [p(E)i] = E) (149) 

and the mean-square error is 

E[-(6) Tr [P(O)(-(6) )Z]. 

If ( = 0, the estimate is said to be unbiased. 

According to the quantum-mechanicil.form of the Cramr-Rao 

inequality E cannot be smaller than [17, 80.] 

C = )],= (150) 
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E >ia /a1 [Tr[pL2 ] (151) 

where L is the symrnetrizedlogar ithnic derivative of p(O) with respect 

to 0, defined by 

( =I (pL+Lp). (152) 

Furthermore, the lower bound can be attained if and only if the sym­

metized logarithmic derivative L has the form 

)AL " k(e)e -0), (153) 

where k(E) is a function only of the true value 0 of the parameter. The 

estimate 0 is then unbiased, for by (149) and (i50), k(6)(( 8)- e) = 

Tr (pL) = Tr [ap(e)/aE3 = a[Trp(e@)]/8. = 0, since Tr p(s) = 1 independently 

of 0,whereupon (6) = 0. The first factor (8( 0)/88) 2 in (151) then 

equals 1, -and we find that the mean-square error attains the minimum 

possible value 

GEMin= jk()j' (154) 

- An example in which the lower bound is attained is the estimate of the 

amplitude A of a coherent signal in a single mode, corresponding to the 

state IAp.), where j- -is a known complex number, 1 . Here A = N 

is the average number of signal photons in the mode. The noise is of the 

thermal variety, and the density operator p(A) takes the form 

p (A)= (irjk') exp[-j a- A1112/.A/-1 Ia) (a d'da, (155) 

where XA is the average number of thermal photons per mode. The 

symmetrized logarithmic derivative L can be shown to be, 

L.= 4(..Q-A)/(ZX+ 1), (156-) 

with 
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= a+±+i'a) (157) 

an unbiased estimator of the amplitude A in terms of the annihilation 

and creation operators of the mode. The minimum mean-square error 

of this estimate, by (153) and (154), is 

Smin- 4 (2 s + 1), 

and the relative mean-square error is 

-
G mi/A = (2 X-+1)/4N D , (158) 

where D is the signal-to-noise ratio defined in (101) for 'detection of a 
coherent signal in thermal noise. The estimating operator _d is, pro­

portional to the quasi-classical detection statistic described in Sec­

tion IV [81]. 

b. - Single Random Parameter 

Let eA be the quantum-mechanical estimator of a random parameter. 8 
with a prior probability density function z(8). The quantum-mechanical 

form of the Cramr-Rao inequality is [82] 

E = z(8) Tr [(8-e) 2zp(E)] d6 

>J {5 z(O) Tr p() L(()+ -%In z(8) dO, 

where L(O) is defined in (15Z). Equality holds if and only if 

A E 
e - 01 = k- in p(8)+L(O) 

for some constant k. 
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Footnotes 

1. 	 A note of caution is advisable here. While it is true that all hypoth­

eses relating to the values of compatible observables are evaluated 

based on theoutcomes of measurements of projection operators 

such as yr., it is not obvious that all projection operators can be 

measured physically. Equivalently, while all observables corre­

spoid to Hermitian operators, it is not clear that all Hermitian 

op6rators With complete sets of eigenvectors correspond to observ­

ables, which in principle are measurable. This problem, of obvious 

practical importance, is beyond the scope of this paper, and we do 

in fact assume that any Hermitian operator that has a complete set 

of eigenvectors is an observable. 

2. 	 The channel capacity is the maximum rate at which the error-prob­

ability Pe can be made arbitrarily small When constrained ii signal 

power. Operation at a rate higher than capacity condemns the sys­

tem to a high probability of error, regardless of the choice of sig­

nals and receiver. 
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Figure Captiois 

Fig. 1. 	 Quantum-mechanical model of communication systems. 

Fig. 2. 	 Probability Pe of error in detection of known signal with prior 

probability = 1/2. D = signal-to-noise ratio = [4Ns/(2XV+ i)]i/2, 

NS = average number of signal photons, X = average number of 

thermal photons. 

Fig. 3. 	 Average prob.ability Pe of error vs average number S of signal 

photons, ideal quanturm receiver of a coherent signal of random 

phase. 

Fig. 4. Average probability Pe of error vs signal-to-noise ratio S/N, 

ideal quantum receiver of a coherent signal of random phase. 

Fig. 5. Quantum-mechanical optimum receiver for narrow-band orthogonal 

signals with known classical amplitudes but random phases. 

Fig. 6. System reliability function for ortnogona coherent signals. 

Fig. 7. Optimum receivei for equal-strength orthogonal signals in a. 

Rayleigh fading channel. 

Fig. 8. Optimum number s 0 of signal photons per diversity path/average 

number: X of thermal noise photons vs R/C. (Classical limit 

taken from [67].) 

Fig. 9. 	 Optimum system reliability function for equal-strength orthogonal 

signals in Rayleigh fading channel. (Classical limit taken 

from [67].) 
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